不同压缩模型在4种粉体辅料压缩中的应用研究

佀国宁, 黄琬婷, 李根生, 徐飞, 褚梦秋

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (23) : 2021-2028.

PDF(7320 KB)
PDF(7320 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (23) : 2021-2028. DOI: 10.11669/cpj.2018.23.009
论著

不同压缩模型在4种粉体辅料压缩中的应用研究

  • 佀国宁, 黄琬婷, 李根生, 徐飞, 褚梦秋
作者信息 +

Application Research of Different Compression Model on Four Powder Excipients Compression

  • SI Guo-ning, HUANG Wan-ting, LI Gen-sheng, XU Fei, CHU Meng-qiu
Author information +
文章历史 +

摘要

目的 对基于Heckel和Kawakita方程建立的通用压缩模型在药物粉体压缩特性中应用进行对比研究,得到2种模型的适用范围和精确度。方法 分别对乳糖、淀粉、微晶纤维素3种常用辅料和含有不同质量百分比的乳糖、淀粉、微晶纤维素、硬脂富马酸钠4种药用辅料混合物进行单向圆片直压实验,对2种不同压缩模型的密度-压力变化规律和模型误差进行分析。结果 在压力值大于80 MPa时,Heckel和Kawakita模型密度误差绝对值均在4%之内,且Kawakita模型的方差小于Heckel模型的方差;当压力值大于60 MPa时,Heckel和Kawakita模型误差绝对值均在3.73%之内,且Kawakita模型的方差小于Heckel模型的方差。结论 应用2种通用压缩模型对药物粉体压缩特性进行分析时,当压力处于80~240 MPa时,2种模型均适用,但Kawakita压缩模型精确度高于Heckel压缩模型。

Abstract

OBJECTIVE To conduct the contrastive studies of universal compression model to pharmaceutical powder compression characteristics effect base on Heckel and Kawakita equation founded.METHODS The uniaxial compression tests were developed with three excipients of lactose, starch, microcrystalline cellulose and four mixture excipients of lactose, starch, microcrystalline cellulose with different mass fraction. The change rules between density and pressure and model error are analyzed of two different compression models respectively.RESULTS The absolute density error value of Heckel and Kawakita compression model is within 4%, when the pressure is greater than 80 MPa,and the variance of Kawakita model is less than Heckel model.The absolute error value of Heckel and Kawakita compression model is within 3.73%, when the pressure is larger than 60 MPa, and the variance of Kawakita compression model less than Heckel model.CONCLUSION During applying two universal compression models to analyze pharmaceutical powder compression characteristics, two models are suitable, when the pressure is between 80 and 240 MPa.

关键词

Heckel模型 / Kawakita模型 / 药物压缩 / 误差分析 / 方差分析

Key words

Heckel model / Kawakita model / pharmaceutical compression / error analysis / variance analysis

引用本文

导出引用
佀国宁, 黄琬婷, 李根生, 徐飞, 褚梦秋. 不同压缩模型在4种粉体辅料压缩中的应用研究[J]. 中国药学杂志, 2018, 53(23): 2021-2028 https://doi.org/10.11669/cpj.2018.23.009
SI Guo-ning, HUANG Wan-ting, LI Gen-sheng, XU Fei, CHU Meng-qiu. Application Research of Different Compression Model on Four Powder Excipients Compression[J]. Chinese Pharmaceutical Journal, 2018, 53(23): 2021-2028 https://doi.org/10.11669/cpj.2018.23.009
中图分类号: R944.4   

参考文献

[1] ALDERBORN G, NYSTROM C. Pharmaceutical Powder Compaction Technology. New York:Marcel Dekker, Inc, 1996.
[2] SINKA I C, CUNNINGHAM J C, ZAVALIANGOS A. The effect of wallfriction in the compaction of pharmaceutical tablets withcurved faces: a validation study of the Drucker-Prager Capmodel. Powder Technol, 2003, 133(1-3):33-43.
[3] HAN L H, ELLIOTT J A, BENTHAM A C, et al. A modified Drucker-Prager Cap model for die compaction simulationof pharmaceutical powders. Int J Solids Struct, 2008, 45(10):3088-3106.
[4] SI G N, CHEN L, SHI H Y, et al. Finite element analysis of pharmaceutical powder compaction withmodified Drucker-Prager Cap model. Chin J Pharm(中国医药工业杂志), 2013,44(1):88-94.
[5] LAMARCHE K, BUCKLEY D, HARTLEY R, et al. Assessing materials′ tablet compaction properties usingthe Drucker Prager Cap model. Powder Technol, 2014, 267(11):208-220.
[6] DIARRA H, MAZEL V, BUSIGNIES V, et al. Comparative study between Drucker-Prager Cap and modified Cam-Clay models for the numerical simulation of die compaction of pharmaceutical powders. Powder Technol, 2017, 320(10):530-539.
[7] SINKA I C, CUNNINGHAM J C, ZAVALIANGOS A. Analysis oftablet compaction. II. Finite element analysis of densitydistributions in convex tablets. J Pharm Sci, 2004, 93(8):2040-2053.
[8] HECKEL R W. An analysis of powder compaction phenomena. T Metall Soc AIME, 1961, 221(5):1001-1008.
[9] KAWAKITA K, LUDDE K H. Some considerations on powder compression equations. Powder Technol, 1971, 4(2):61-68.
[10] COOPER A R, EATON L E. Compaction behavior of several ceramic powders. J Am Ceram Soc, 1962, 45(3):97-101.
[11] SONNERGAARD J M. A critical evaluation of the Heckel equation. Int J Pharm, 1999,193(1):63-71.
[12] PATEL S, KAUSHALA M, BANSAL A K. Mechanistic investigation on pressure dependency of Heckel parameter. Int J Pharm, 2010,389(1):66-73.
[13] CARSTENSEN J T, GEOFFROY J M, DELLAMONICA C. Compression characteristics of binary mixtures. Powder Technol, 1990, 62(2):119-124.
[14] JUKKAILKKA, PETTERI P. Prediction of the compression behavior of powder mixtures by the Heckel equation. Int J Pharm, 1993, 94(1-3):181-187.
[15] BUSIGNIES V, LECLERC B, PORION P, et al. Compaction behavior and new predictive approach to the compressibility of the binary mixtures of the pharmaceutical excipients. Eur J Pharm Biopharm, 2006, 64(1):66-74.
[16] FRENNING G, NORDSTROM J, ALDERBORN G. Effective Kawakita parameters for binary mixtures. Powder Technol, 2009, 189(2):270-275.
[17] MAZEL V, BUSIGNIES V, DUCA S, et al. Original predictive approach to the compressibility of the pharmaceutical powder mixture based on the Kawakita equation. Int J Pharm, 2011, 410(1):92-98.
[18] SI G N,CHEN L,ZHANG J H, et al. Theoretical analysis and experimental research of pharmaceutical powder compression characteristicsbase on the Heckel equation. Chin Pharm J(中国药学杂志), 2014, 49(9):746-752.
[19] SI G N, CHEN L, LI B G. The oretical modeling and experimental research on directcompaction characteristics of multi-componentpharmaceutical powders based on the Kawakita equation. Acta Pharm Sin(药学学报),2014, 49 (4):550-557.

基金

上海市联盟计划项目资助(LM201750)
PDF(7320 KB)

Accesses

Citation

Detail

段落导航
相关文章

/